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Introduction

Motor-vehicle travel is a mixed blessing
for modern times. During the average
day in the United States, for example,
about 100 people step into a vehicle and
do not emerge alive according to data
from the 1996 Statistical Abstract of the
United States, published by the Bureau
of the Census. Crashes are especially
poignant if they kill healthy people who
otherwise might have led long and pro-
ductive lives. A 1957 New England Jour-
nal of Medicine study found that crashes
are usually (>90%) attributed to driver
error rather than failures in the vehicle
or roadway. The most important factor
in driver error is alcohol, contributing to
about 40% of fatal collisions in 1994
according to a National Highway Traf-
fic Safety Administration report. The
other factors causing driver error are not
completely known. A better under-
standing of such errors might allow peo-
ple to benefit from motor vehicle travel
at a lower personal risk.

One potential driver error is an inap-
propriate lane change, a vehicle maneu-
ver that may have substantial risks for
several reasons. First, it causes the indi-
vidual to straddle traffic flows and be
exposed to two streams of vehicles. Sec-
ond, it requires the driver to make rapid
judgments about sufficient spacing.
Third, it increases the hazard related to
other vehicles approaching along the dri-
ver’s blind spot. Fourth, it disrupts the

traffic pattern for
following vehicles.
The overall risks
associated with
each lane change
are uncertain
because the
amount of normal
driving spent mak-
ing lane changes is
not known with
precision; however,
rough estimates in
an Ontario Ministry
of Transportation
report suggest
about a threefold
relative risk if less
than 1% of normal
driving involves a
lane change.

We wondered
whether people can
accurately judge if
they are in a lane
that is slower than
the next lane on a
congested roadway.
Mistaken impres-
sions, for example,
might cause a driver to incorrectly think
the next lane is faster and motivate a
needless lane change. Perhaps errors in
judgment produce a systematic bias and
create an illusion that the next lane is
generally moving faster, even if all lanes
have the same average speed. One basis

for such error is if drivers expect that
they should spend equal amounts of
time passing and being overtaken. We
have shown that such an expectation is
mistaken when time is measured by dis-
crete intervals. We recently popularized
this finding in an exceedingly short paper
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published in Nature. This article
describes the work in detail.

Methods

Individual Vehicle Perspective

Most traffic studies describe vehicle
flow at a macroscopic level. Doing so
makes sense because agencies tend to
focus on the mobility of large popula-
tions rather than unique individuals. In
addition, studying traffic at the level of
an individual vehicle is problematic
without elaborate video equipment or a
helicopter. For our study, however, we
wanted to learn about an individual per-
son’s perceptions while driving a single
vehicle. To address this topic, we relied
on computer simulations for testing
diverse and extreme situations. Later in
the article we discuss field data we also
collected to test our models. Computer
simulations were the core of our work
because experiments on real drivers
seemed to be unsafe, unethical, imprac-
tical, or too expensive. 

The computer simulations tracked
each vehicle each second to determine
where it was and what it was doing
(accelerating, decelerating, or staying at
constant velocity). We assumed a vehi-
cle would accelerate if it was traveling
slower than its target speed and no other
vehicle ahead was within the minimum
headway distance. The vehicle would
decelerate if another vehicle was ahead
and within the minimum headway dis-
tance. The vehicle would maintain a
constant speed if it achieved target
speed and no other vehicle ahead was
too close (within the minimum headway
distance). Initial simulations used a min-
imum headway distance guaranteeing
that collisions would not occur, whereas
supplementary simulations applied less
restrictive headways.

The baseline analysis used parame-
ters to yield a plausible simulation yet
allow subsequent sensitivity analyses.
The target speed was set at 100 km/h (63
mi/h) and identical for all vehicles. The
acceleration was set uniform for all vehi-
cles and capable of going from 0 km/h
to 100 km/h in 10 seconds. The decel-
eration was set uniform for all vehicles
and capable of going from 100 km/h to
0 km/h in 5 seconds. Such performance
is similar to that of a Honda Accord. The

minimum headway distance (d) was a
function of current velocity (v) and equal
to the expression [d = (v2/100) + 1].
Thus, a vehicle traveling at 100 km/hr
required a minimum headway of 101 m,
stayed at constant speed if the next vehi-
cle was 110 m ahead, and decelerated if
the next vehicle was 90 m ahead. 

Aggregate Traffic Characteristics

Other assumptions were used to take
into account roadway characteristics
and traffic congestion. The most impor-
tant assumption was that the number of
vehicles and amount of available road-
way was stable. This implied that the
overall spacing of traffic, expressed as
the average length of roadway available
for the average vehicle, was constant
and not negligible. Thus, conditions
which provided little total roadway for
large numbers of vehicles resulted in
substantial congestion. If the average
spacing was less than 100 m, then not
all vehicles could maintain target speed
under baseline conditions. Moreover, an
average spacing that was greater than
100 m did not guarantee smooth flow
unless all the vehicles were spaced fairly
evenly.

A completely realistic simulation of
a single lane of traffic was impossible
because vehicles can differ in target
speed, headway tolerance, acceleration,
deceleration, starting position, current
velocity, and sequence relative to others.
Our model was designed with a few ini-
tial sources of randomness, then gradu-
ally made more complex. The baseline
condition assumed that all vehicles had
identical performance characteristics
and started at zero velocity. Starting posi-
tions were initially generated using a
mixture of normal distributions to pro-
vide spacing that was nonnegative with
low mean and high variance. The mix-
ture of  normal distributions specifies
that a random variable is drawn accord-
ing to a specified probability from one
of two different normal distributions.

The main advantage of the computer
simulations is that they permitted con-
struction of a second lane of traffic rel-
atively effortlessly. Moreover, the second
lane could be established with charac-
teristics identical to the index lane,
including the number of vehicles and
overall spacing. By applying a different
starting seed to the random generator,
however, the two lanes could follow

somewhat different patterns yet obtain
the same average speed. Furthermore,
computer simulations made it possible
to prevent drivers from making lane
changes. The essential contribution of
a two-lane simulation was that it allowed
drivers to not just determine their
absolute speed on the roadway but also
to determine their relative speed com-
pared to vehicles in the next lane.

Psychological and Statistical Issues

Research in psychology suggests that
people in parallel queuing processes
tend to judge their speed by assessing
their progress relative to those in the
other queue. We defined a “passing
epoch” when the index driver started
behind and ended ahead of one or more
drivers in the other lane after a one-sec-
ond interval. We defined a “being over-
taken epoch” when the index driver
started ahead and ended behind one or
more drivers in the other lane after a
one-second interval. Other investigators
use the terms “skips” and “slips” to
denote these two events. All else equal,
drivers prefer passing rather than being
overtaken. A key issue was that people
are sensitive to these events but rela-
tively insensitive when two events occur
simultaneously.

All simulations were programmed
using the S-PLUS statistical language.
The typical run time was about 5 min-
utes to create a single simulation of about
10 minutes of highway traffic. For our
analyses, we typically ran about 100 sim-
ulations for both traffic lanes to obtain
stable estimates for the mean number of
overtaking epochs and passing epochs
during each 10-minute interval for an
index vehicle. Typically, this required
more than a full day of computer pro-
cessing time to create simulations and
summary statistics. Comparisons were
expressed as both the absolute number
of overtaking and passing epochs as well
as the relative number of overtaking and
passing epochs. All comparisons were
statistically significant (p<.001), except
where noted. 

Results

Virtual Vehicles

The speed of individual drivers showed
long intervals of slow velocity and short
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bursts of high velocity (Fig. 1). The over-
all pattern was nonconstant and non-
periodic with most time spent at slow
velocity. As expected, the correlation
between a vehicle’s current speed (com-
pared to the road) and current spacing
(compared to vehicle in front) was
strong and positive (the correlation was
.34, with a 95% confidence interval .26
to .42). The mean velocity was about 18
km/h, which is slower than the velocity
of about 31 km/h theoretically possible
if all vehicles achieved uniform spacing
(and also slower than theoretically pos-
sible if vehicles tailgated in an unsafe
manner). The variation in speed and
spacing showed no trend toward abat-
ing as the simulation duration increased.

The relative speed of one index dri-
ver compared to one other driver in the
next lane also followed a complex pat-
tern (Fig. 2). Substantial variation in rel-
ative speed and relative position was
observed even over a short time inter-
val. The curves did not represent con-
ventional random walks because
extreme differences were unlikely and
there were frequent crossings of the zero
point. In addition, positive serial corre-
lation was found so that the average nar-
rowing epoch (where the separation
between the two drivers decreased) was
about three times more likely to be fol-
lowed by another narrowing epoch than
by a widening epoch. More complicated
descriptive statistics were possible by
evaluating two (or more) comparator dri-
vers in the next lane.

Summary Findings

Summary statistics were based on com-
paring the index driver to all the other dri-
vers traveling in the next lane of traffic.
Much of the time nothing happened and
relative positions remained unchanged.
Typically, during a 10-minute interval
about 76 of the 600 one-second epochs
(13%) were characterized by an event.
Epochs in which the index car was over-
taken were more frequent than epochs
in which the index car was passing (43
vs. 33, ratio = 130%). Of course, the aver-
age number of cars overtaking the index
car during the average overtaking epoch
was proportionately smaller than the
average number of cars passed by the
index car during the average passing
epoch. Hence, the total number of over-
takes equalled the total number of passes
over the full interval (each about 46).

These baseline conditions indicated
that the next lane might mistakenly
appear faster than the driver’s current
lane, even though both lanes had iden-
tical average speeds. Results from indi-
vidual simulations varied, but in 70%
of cases the imbalance indicated fewer
passing epochs than being overtaken
epochs. For all simulations, the asym-

metry was similar during the first and
the second five minutes of simulation.
The exact number of vehicles in each
lane (varying between 100 or 1,000)
made no difference provided that the
average traffic density remained
unchanged. One of the strongest deter-
minants was the overall degree of con-
gestion, where decreasing congestion
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Figure 1. Speed and position of one vehicle in a single lane of traffic. Top panel shows
speed of index vehicle relative to pavement. Bottom panel shows distance of index
vehicle from vehicle immediately ahead. X axis shows 10 minute time interval as sin-
gle-second epochs. Y axis shows speed and distance, respectively, at each time
epoch. Note, for example, that a large gap appears for the index vehicle slightly
before the 120-second mark, which allows a large increase in speed for the index
vehicle slightly after the 120-second mark. In this simulation the vehicle was pro-
grammed to accelerate at exactly 10 m/s/s and decelerate at exactly 20 m/s/s.
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tended to attenuate the asymmetry
(Fig. 3).

Testing Other Factors

A more subtle characteristic of roadway
congestion was the initial source of ran-
domness. Our baseline condition
assumed that the starting gaps between

vehicles followed a mixed normal dis-
tribution: 90% of the gaps followed a
normal distribution with mean 2 and
standard deviation 0.1 and 10% followed
a normal distribution with mean 100
and standard deviation 5. This created
a bimodal distribution of initial gaps and
a skewed distribution of subsequent

gaps (Fig. 4). Replacing the mixed nor-
mal random generator with a Bernoulli
random generator (90% of the gaps are
of length 2 and 10% are of length 100)
yielded a somewhat greater subsequent
apparent difference in speed (54 vs. 36,
ratio = 150%). Replacing the mixed nor-
mal random generator with a Poisson
random number generator having the
same mean (11.8) yielded a smaller sub-
sequent apparent difference in speed
(81 vs. 70, ratio = 116%).

Altering the vehicle characteristics
could accentuate or attenuate the appar-
ent difference in speed. A particularly
high target speed had virtually no effect,
however, because almost no vehicles
attained their target speed under base-
line conditions. Vehicles with especially
fast acceleration, that could go from 0
km/h to 100 km/h in 5 seconds rather
than 10 seconds, generated a larger
apparent difference in speed (41 vs. 22,
ratio = 186%). Vehicles with especially
fast deceleration, that could go from 100
km/h to 0 km/h in 2.5 seconds rather
than 5 seconds, generated a smaller
apparent difference in speed (68 vs. 58,
ratio = 117%). Simulations in which
only the index vehicle had special attrib-
utes yielded results similar to the base-
line findings.

Several characteristics of the driver
could change but not reverse the appar-
ent difference in speed. Doubling the
minimum headway distance for the
index driver reduced the apparent dif-
ference in speed (51 vs. 46, ratio =
112%). Cutting the minimum headway
distance by half — to model more tail-
gating — increased the apparent differ-
ence in speed (33 vs. 16, ratio = 208%).
Allowing the index vehicle to maintain
cruise control at the same average speed
as the other lane had negligible effect
on the apparent difference in speed (48
vs. 37, ratio = 130%). Allowing the index
driver to make fewer glances at the next
lane so that comparisons occurred every
two seconds rather than every one sec-
ond reduced the apparent difference in
speed (16 vs. 14, ratio = 114%). 

People’s Beliefs

To contrast against our formal analysis,
we surveyed students attending a safety
course and asked about their intuitive
beliefs concerning driving in heavy traf-
fic (n=110). The majority (74%)
believed that if the next lane has the
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Figure 2. Speed and position of one vehicle compared to a vehicle in next lane. Top
panel shows speed of index vehicle relative to one vehicle in the next lane. Bottom
panel shows distance of index vehicle relative to the other vehicle. X axis shows 10
minute time interval as single-second epochs. Y axis shows speed and distance,
respectively, at each time epoch. Note, for example, that during the first 30 seconds
the index vehicle loses much of its advantage over the other vehicle as shown by a
negative relative speed and a declining relative position. In this simulation both vehi-
cles were programmed to accelerate at exactly 10 m/s/s and decelerate at exactly 20
m/s/s.
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same average speed as the current lane
the amount of time spent passing and
being overtaken should be equal. The
remainder (26%) were split almost
evenly on whether the amount of time
passing should exceed or should trail the
amount of time spent being overtaken
(10% vs. 16%). Many (46%) indicated
they would consider changing lanes if
the relative difference exceeded 10%.
The majority (72%) indicated they
would consider changing lanes if the rel-
ative difference exceeded 50%.

As another test of validity we also
videotaped traffic sequences by mount-
ing a camera in a moving vehicle and
recording the side-view perspective of
the next lane on a congested roadway
during rush hour. A section of videotape
was then selected that showed four min-
utes of continuous traffic with many
overtaking and passing events and with
an overall speed slightly slower in the
next lane. The section of videotape was
screened to another group of driving stu-
dents (n=120) who were asked to judge

whether the next lane moved faster or
slower than the index lane. The major-
ity stated that the sequence was realis-
tic (86%), that the next lane moved
faster (70%), and that they would have
made a lane change if safe to do so
(65%). 

Discussion
We developed a computer simulation to
evaluate the speed of individual vehicles
on a congested roadway. We then con-
structed a second lane of traffic having
similar characteristics and assessed the
apparent speed of the second lane rela-
tive to an index vehicle in the first lane.
We found that the second lane could be
mistakenly perceived as going faster
because a driver generally spent more
time being overtaken than passing. No
combination of assumptions or para-
meters reversed this asymmetry. A video-
tape sequence obtained from field
observations confirmed people’s mis-

taken impressions of speed on a con-
gested roadway. Together, these findings
suggest a roadway illusion — namely,
that the next lane on a congested road-
way appears to be moving faster than the
driver’s current lane even if both lanes
have the same average speed.

The mistaken impression arises due
to several factors. The basic explanation
is that vehicles spread out when going
quickly and pack together when going
slowly (Fig. 5). A driver on a congested
roadway can pass many vehicles in a
brief interval, whereas it takes much
more time for the driver to be overtaken
by the same number of vehicles. Hence,
a journey has fewer passing epochs than
overtaking epochs. Every driver, there-
fore, should normally expect to spend
more time going slower than going faster
compared to others. In contrast to this
principle of queuing theory, people do
not formally integrate the frequency and
intensity of every moment and, instead,
expect that the amount of good times
should balance the amount of bad times.
Of course, people’s mistaken judgments
are sometimes fortuitously correct and
the next lane turns out to be faster.

Several factors can alter the appar-
ent asymmetry in speed. We found that
greater congestion, particularly if dis-
tributed unevenly, intensified the illu-
sion. Vehicles with powerful engines or
weak brakes also accentuated the illu-
sion. Drivers who tended to tailgate or
who made frequent glances at the com-
parison lane were more prone to the illu-
sion. Together, these observations
suggest that the apparent faster speed
of the next lane is a function of both the
roadway, the vehicle, and the driver. The
essential role of congestion also suggests
that the illusion may be a new phe-
nomenon given that, for example, from
1985 to 1995 in the United States the
number of vehicle miles travelled
increased by 32% but the amount of
available roadway increased by only 1%.

We studied faulty intuitions related
to queuing theory, but other aspects of
human reasoning could reinforce the
impression that the next lane moves
faster than the driver’s current lane. Dif-
ferential surveillance can occur because
drivers direct more attention ahead than
behind; consequently, vehicles that are
passed (victories) turn invisible whereas
vehicles that overtake (defeats) stay con-
spicuous. Moreover, glances at the next
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Figure 3. Relation of traffic speed to time spent passing and being overtaken. Figure
shows relation of traffic speed to amount of time spent passing and being overtaken.
X axis shows the overall average speed of a lane. Y axis shows the total number of
single-second epochs in a 10 minute interval in which index driver passes or index
driver is overtaken by one or more vehicles in next lane. Note, for example, at an
average speed of 15 km/h a driver spends about 46 seconds being overtaken by vehi-
cles in next lane and about 33 seconds passing vehicles in next lane. Lesser conges-
tion leads to higher speeds, fewer passing and overtaking epochs, and a smaller asym-
metry.
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lane may be more frequent when drivers
are relatively idle. Even if attention were
omnidirectional and evenly paced,
human psychology may make losses
appear more salient than the corre-
sponding gains, causing the joy of pass-
ing to feel less intense than the
frustration of being overtaken. Finally,
misconceptions about chance, like
those described in the basketball “hot

hand” literature, can make even small
streaks seem unduly large.

The most important limitation of our
analysis is the dearth of empiric data on
the speed of individual drivers in con-
gested roadways. This shortfall in back-
ground data is not surprising. Police
investigations determine peak velocities
for purposes of law enforcement. Trau-
matologists estimate impact velocities
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Figure 4. Characterizing initial and subsequent degrees of congestion. Top panel
shows distribution of initial gaps between 100 consecutive vehicles at the first single-
second epoch. Bottom panel shows distribution of subsequent gaps between 100
consecutive vehicles for the remaining 599 single second epochs. X axis shows spac-
ing in meters, and Y axis shows corresponding frequency. Note, for example, that in
this one simulation the initial bimodal distribution collapses substantially, but incom-
pletely and unevenly, to an average spacing that is still about 15 meters between con-
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Figure 5. Asymmetry between passing
and overtaking vehicles in the next lane.
Top panel portrays an aerial view of a
passing epoch. Bottom panel shows an
aerial view of an overtaking epoch. Two
lanes are shown, marked left and right,
each with traffic flow in an upward
direction. The index vehicle is represent-
ed by a hollow circle and all other vehi-
cles are represented by solid circles. Note
that the index vehicle can pass three
vehicles in a single second if the right
lane is sufficiently slow and congested; in
contrast, the index vehicle is overtaken
by each vehicle separately when the right
lane is fast and uncrowded.
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as an index for the severity of injury. Traf-
fic engineers assess aggregate flow rates
in efforts to maximize the mobility of
populations. We are aware of no previ-
ous studies focusing on our line of inves-
tigation. The pioneering nature of our
findings, therefore, calls for more
research directly measuring the speed of
individual drivers over extended inter-
vals under natural circumstances. The
data we obtained from simulations are
already quite intricate, suggesting that
data from field studies could be even
more complicated.

An understanding of the highway
illusion may encourage drivers to con-
sider a few safety strategies. First and
foremost, individuals should recognize
the illusion and resist small temptations
to change lanes. In addition, drivers
might want to focus more on the clock
and less on social comparisons when
evaluating their progress in heavy traf-
fic. Incidentally, drivers could try direct-
ing more attention toward the rear-view
mirror and less toward the side-view
window to enhance their subjective sat-
isfaction. Finally, people could remem-
ber that some human factors leading to
aggressive driving are not idiosyncratic
pathology but normal psychology.
Authorities stress that the secret for safe
driving is to never be in a rush. Our find-
ings suggest that naive attempts to rush
may be misguided without a careful
understanding of queuing theory.

Aftermath
After publishing our study in Nature, we
were interviewed by many journalists
and encountered five common ques-
tions. Some have wondered whether it
is ever worthwhile to change lanes while
driving. Clearly, a driver must occasion-
ally avoid a fixed obstacle, prepare for
an exit, avoid a forced exit, or escape
from behind a truck. On occasions when
the roads are congested, as well, there
may be times when the next lane is mov-
ing faster and the driver can gain by mak-
ing a lane change. Our main finding,
however, suggests that the gains from
discretionary lane changes are smaller
than usually believed and moreover, that
discretionary judgments are fallible
when estimating speeds on congested
roadways. A more conservative attitude,
we hope, might encourage drivers to be

selective about discretionary lane
changes.

A few skeptics have questioned
whether a research study can change
people’s actions and lead to safer driving.
We recognize that knowledge does not
always control behavior, yet have some
reason for optimism. For example, in the
United States seatbelts were initially
received with great reluctance (17%
adherence in 1982) but subsequently
followed with growing popularity (69%
adherence in 1988). Because inappro-
priate lane changes cause approximately
300,000 collisions each year in the
United States (National Highway Traf-
fic Safety Administration 1995; Ontario
Ministry of Transportation 1998), a
small improvement in behavior could
still yield substantial benefits. In addi-
tion, a decreased frequency of lane
changes might offer indirect benefits by
creating an environment of greater lane
discipline and less incentive for other-
wise cautious drivers to tailgate as a way
of preempting a lane incursion by oth-
ers.

Some people have correctly noted
that passing and being overtaken are
really instantaneous events that are
equal for both vehicles. We agree with
this strict definition but emphasize that
people tend to consider the events in
more extended intervals. Some journeys
seem to entail a lot of time spent pass-
ing or being overtaken, contrary to the
theory that each event is instantaneous.
The roadway illusion occurs if people do
not follow strict definitions and tend to
view experiences as time intervals, such
as single-second epochs. Indeed, some
people go further and err by driving as
if it were a competitive sport (evaluat-
ing progress relative to others) rather
than as a logical problem-solving exer-
cise (evaluating progress by arrival time).
Hence, the misperception stems from
human psychology and not from logical
theory.

Some journalists have wondered
whether our findings might apply to slow
speed queues such as those found in
grocery stores and banks. Our research
focused on high-speed travel because of
the serious consequences of a motor-
vehicle collision. For indoor settings,
beliefs about being in the wrong lane
may primarily stem from biases of mul-
tiple comparisons and ignoring other
lanes that are moving slower than you.

One more paradox is that consumers
are happy to spend an hour navigating
around the grocery store gathering items
but become upset by having to wait five
minutes for checkout. A better per-
spective might be to evaluate the total
time spent door-to-door and place no
special emphasis on the final few min-
utes. Apparently, people’s feelings do not
always match the reality of a situation.

We have also been quizzed on
whether our results are likely to apply to
congested roadways outside of Canada.
We only obtained videotapes from the
Trans-Canada highway, and we do not
know the extent of roadway congestion
elsewhere. The illusion would not apply
to roadways that maintain organized
laminar flow, where faster cars are
streamlined to more central lanes.
Instead, the illusion occurs on con-
gested roadways because flow is disor-
ganized, the laminar structure
disintegrates, and drivers become impa-
tient. Our main observation relates to
people’s misunderstandings of the laws
of probability, and the laws of probabil-
ity are enforced in all countries. Wher-
ever the roads are congested, the best
way to arrive five minutes sooner is to
start five minutes earlier.
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■ 1. Question 
How important is randomization?

■ 2. Activity 
Across the midwest farmers are constantly

looking for that competitive edge that will increase
profits. Responding to this demand, seed
companies have developed, through cross
breeding, hybrid varieties of corn with higher and
higher yields. More recently, through genetic
engineering, there are now corn varieties that are
resistant to the affects of herbicide residue and
others that can combat pests like the European
corn borer. Once a variety of corn is developed, the
true test of its values comes in field trials. A field
trial is a designed experiment used to compare
varieties of corn (or soybeans, or wheat, etc.) in
terms of average yield (or some other measure of
quality). Sir Ronald Fisher developed many of the
methods of applied statistics while analyzing
agricultural field experiments at Rothamsted in
England. The following activity simulates an
agricultural field experiment, or field trial,
conducted to compare two varieties of corn, A and
B.

■ Class Activity Introduction
Researchers at a large seed company are

planning a field trial to compare two hybrid
varieties of corn. The response of interest is the
yield, in bushels per acre. The better variety will be
the one with the highest yields but the researchers
recognize that variation in soil composition,
fertility and drainage will have effects on the
growth of plants and thus yield. There is a filed
with 36 plots available for the experiment. On 18
plots variety A will be planted and on the other 18
plots variety B will be planted. The researchers
wish to see if the two varieties have equal yields,
on average, or if the two varieties differ
significantly. If the two varieties really do differ, the
researchers would like their experiment and the

subsequent statistical analysis to detect this true
difference. The ability of a statistical procedure to
detect a true difference is called the power of the
procedure. The researchers must decide how to
assign the varieties to the plots.

Convenience Assignment
It is easiest to plant one variety on 18 plots on

one side of the field and the other variety on the 18
plots on the other side. Modern machinery cam
plant up to 18 rows at a time, so planting in this
way can be done in one or two passes through the
field. Below is a picture of such an assignment and
the yields, in bushels per acre, for each plot.

Summary n mean std. dev  
A  18 144.9 8.29  
B  18 141.8 7.65

Based on this assignment, by convenience,
does one variety appear to have a larger mean
yield? Is there a significant difference in mean
yields between the two corn varieties?

Hal SternW. Robert
Stephenson
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Systematic Assignment 

Many people think that an alternating
sequence is a random, or at least an unbiased,
sequence. For example, when assigning
participants to treatment and control, taking every
other participant (alternating) for the treatment
group appears random. However, if participants
are lined up alternating between male and female
then all the males will be in one group and all the
females in the other. Gender and group would be
completely confounded. That is the effects of
treatment and control are inseparable from gender
effects. In a field, an alternating pattern would be
like a checkerboard. Below is a picture of such an
alternating pattern and the yields, in bushels per
acre, for each plot.

Summary n mean std. dev  
A  18 142.3 5.75  
B  18 144.5 5.37

Based on this assignment, alternating, does
one variety appear to have a larger mean yield? Is
there a significant difference in mean yields
between the two corn varieties?

Discuss the results from the analysis of the
convenience assignment data and those from the
analysis of the alternating assignment data. Some
may find it a bit disturbing that B appears better
for one assignment while A appears better for the
other. Of course, this could be due to chance
variation. It could also be due to a poor assignment
of treatments. For example, the right side/left side
assignment is vulnerable to bias due to soil fertility,
or drainage that is different from one side of the
field to the other. The checkerboard assignment is
also susceptible to fertility, drainage or other
gradients.

Random Assignment 
What if chance is used to assign varieties to

plots? How, physically, would you randomly assign
varieties to plots? Come up with a randomization

scheme to assign variety A to 18 plots and variety B
to the remaining 18 plots. Record your
assignments in the table below.

Once you have completed your random
assignment, ask your instructor for “The Truth” —
this sheet gives the yield for each plot using either
variety. “The Truth” was used to fill in the yields for
the plots in the convenience and alternating
patterns you looked at earlier. In general, “The
Truth” is not available since it requires knowing
what would happen to the same plot of land using
each of the treatments. 

Write down the yields for your random
assignment — if you have an A in the row 1,
column 1 plot then you would put down 130
whereas if you have a B in the row 1, column 1
plot you would put down 118 for the yield. Repeat
for all squares. This gives you 18 A yields and 18 B
yields. Based on this assignment, at random, did
you find a significant difference in mean yield
between the two corn varieties? 

Share and discuss your results. Examine “The
Truth” more closely. Which variety appears to have
the larger yield? By how much?

■ 3. Suggested Solution

Convenience Assignment
Using a two independent sample analysis to

compare the mean yields of the two varieties the
value of the t-test statistic is 1.17 with an
associated two sided P-value of 0.25. The P-value
is the same whether you use the pooled or non-
pooled option on the TI-83. If you are using the
conservative degrees of freedom, min(n1-1, n2-1) =
17, the P-value would be 0.26. Although variety A
has a slightly larger mean yield, there is not a
statistically significant difference between the
sample mean yields for the two varieties.
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Alternating Assignment 

Using a two independent sample analysis to
compare the mean yields of the two varieties the
value of the t-test statistic is -1.20 with an
associated two sided P-value of 0.24. The P-value
is the same whether you use the pooled or non-
pooled option on the TI-83. If you are using the
conservative degrees of freedom, min(n1-1, n2-1) =
17, the P-value would be 0.25. Although variety B
has a slightly larger mean yield, there is not a
statistically significant difference between the
sample mean yields for the two varieties.

Random Assignment 
How one randomly assigns varieties to plots is

a good class discussion question. Some students
might suggest flipping a coin for each plot; heads =
A and tails = B. This is random but will not assure
18 plots with variety A and 18 with variety B.

One way to randomly assign the varieties to
the plots is to use a die.

—Roll the die, this will give the row number
for the plot 

—Roll the die again, this will give the column
number for the plot 

—Assign variety A to the plot with the
(row,column) numbers from above 

—Repeat the steps above until 18 plots have
variety A 

—Fill in the remaining 18 plots with variety B
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Another way to randomly assign the varieties
to plots is to use the TI-83 to generate a random
assignment. Essentially what we want to do is to
select 18 of the 36 plots at random to receive
variety A. The remaining 18 plots (they are chosen
at random by default) will receive variety B. To do
this first label the plots sequentially from 1 to 36.
Then using the TI-83 calculator;

—Put the numbers 1, 2, 3,..., 36 in L1. 
—Generate 36 uniform random digits in L2.

Math → PRB → 1:rand → ENTER rand (36) →
STO → L2

—Arrange L2 in ascending order while
carrying the entries from L1 along. 2nd → LIST →
OPS → 1:SortA(→ ENTER SortA(L2, L1) →
ENTER

—Read off the first 18 numbers in list L1.
These plot numbers will receive variety A. The
remaining plot numbers will receive variety B.

Summary n mean std. Dev
A 18 150.4 9.49
B 18 136.3 8.74

Using a two independent sample analysis to
compare the mean yields of the two varieties the
value of the t-test statistic is 4.64 with an
associated two sided P-value that is virtually zero.
The P-value is the same whether you use the
pooled or non-pooled option on the TI-83. Even
using the conservative degrees of freedom, min(n1-
1, n2-1) = 17, the P-value is virtually zero. Varieties
have different mean yields and that difference is
statistically significant.

Closer examination of “THE TRUTH” reveals
that variety A has a yield that is 12 higher than
variety B on every plot. The true difference in yield
between variety A and variety B is 12 bushels per
acre.

THE TRUTH
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■ 4. Discussion

Assignment by convenience or using an
alternating pattern failed to uncover the true
difference between the two varieties. “THE
TRUTH” was set up in such a way that the
convenience pattern and alternating pattern would
mislead the experimenter. If you look closely at
“THE TRUTH” you will see that there are
alternating high/low yield gradients running
diagonally across the field.  By planting one variety
on one side of the field, or in the alternating
pattern, the superiority of variety A is hidden by
these diagonal yield gradients. In real fields the
truth is not known but non-random assignment of
varieties to plots can mislead the experimenter in
much the same way. The hidden patterns in real
fields can confound the effects of the varieties.

Randomization, the random assignment of
varieties to plots tends to take hidden patterns (or
lurking variables) and spread their effects evenly
across the treatment groups. This allows us to see
the underlying truth most of the time. This
disclaimer, “most of the time,” is important. Even
with randomization, we are not guaranteed to find
a statistically significant difference even when a real
difference does exist. In fact, the chance that a test
of hypothesis can detect a difference when one
exists is called the power of the test. By looking at
the results of tests based on many random
assignments, this activity can be used to simulate
the power of the two sample t-test to detect a
difference in mean yield of 12 bushels per acre.
When this randomization activity was done by 40
AP statistics teachers at a short course, all but one
of the teachers obtained a t-test statistic that was
statistically significant. That is, the simulated
power was 39 out of 40 or 97.5%.

■ 5. More on Power
Let’s look at power in a little more detail. What

we would like to know is of all the possible
randomizations of varieties to plots how many
would produce a significant difference in sample
mean yields? There are over 9 billion possible
randomizations so enumerating all of them is out
of the question. We can tackle this problem
theoretically with some simplifying assumptions.
For the two sample problem, it is easiest to look at
power assuming normally distributed values with a
common, and known variance. For the corn yield
example we might assume that the yields for
variety A are normally distributed with a mean µA

and variance σ2=87. Additionally, let’s assume that
the yields for variety B are normally distributed
with a mean µB and variance σ2=87. The value 87
for the population variance is obtained from the

values reported in “THE TRUTH.” We need to first
establish what is a statistically significant
difference. To do this we can use the 68-95-99.7
(or empirical) rule. Recall that approximately 95%
of normally distributed values are within 2
standard deviations of the mean. So any difference
whose absolute value is greater than 2 standard
deviations is statistically significant at
approximately the 5% level. We have the variances
for individual yields but we need the variance (to
get the standard deviation) of the difference in
sample mean yields.

Sample mean yields (n=18) for variety A will
be normally distributed with a center at µA and a
variance 

Similarly, sample mean yields (n=18) for variety B
will be normally distributed with a center at µB and
variance 

The difference in sample mean yields will be
normally distributed with a center at µA - µB and a
variance of 

Thus the standard deviation for the difference in
two sample mean yields (n=18) is

Any absolute difference in sample mean yields
larger than two standard deviations (6.22) would
be considered statistically significant.

To calculate the power all we would need to
do is to compute the probability of getting a
difference in sample mean yields that is less than
–6.22 or greater than 6.22 when we assume the
true difference in means µA – µB = 12. This is just
the probability that a normal random variable with
mean 12 and standard deviation 3.11 takes on a
value less than –6.22$ or greater than 6.22. We can
obtain the standardized values 

The normal cumulative distribution function (cdf)
for z1 is zero and so contributes nothing to the
power calculation. The cdf for z2 is 0.03, so the
chance of being greater than z2 =–1.86, and thus
the power, is 1 – .03 = .97. The computation of the
power is illustrated in the figure below.

Power is actually a function of how big a
difference you want to detect. In the calculation
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above, the true difference
of 12 will be picked up
most of the time by a two
independent sample test
when randomization is
used to assign varieties to
plots. The power will be
much lower for smaller
true differences. You can
adjust “THE TRUTH” so
that variety A beats variety
B by say 6 bushels. You
will find that the power as
calculated above (think
about moving the right
hand normal curve in the
figure above so that it is
centered at 6 instead of
12) is less than before (around 0.50). Power is

clearly a function of the
size of the true difference.
Procedures have more
power to detect large
differences than small
differences. Power is also
affected by sample size.
We know that larger
sample sizes are good
because they reduce the
variation in the sample
mean. It is nice to know
that larger sample sizes
also provide more power
for much the same reason.
Think about how the
graph above would change
if the sample size, the

number of plots receiving each variety increased.
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